On the separation of hydrodynamic and acoustic waves in linear free-shear flows

A. Agarwal, G. Gabard, S. Sinayoko and Z. Hu

University of Southampton
Institute of Sound and Vibration Research

ERCOFTAC, 2008
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Introduction

Objective

Motivation

Introduction to filtering in time domain

Filter characteristics

Wave-operator filter

The wave-operator filter

Filtering of a two-dimensional shear layer problem

Corrective filter

Rationale

Proof of concept based on the two-dimensional shear layer problem

General solution based on Green’s functions
Filter out the acoustic waves
Leave the hydrodynamic waves unchanged
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Motivation

Navier-Stokes equations

\[\mathbf{Nv} = \mathbf{s} \quad (1) \]

Filtered Navier-Stokes equations

\[\mathbf{N\tilde{v}} = \mathbf{\tilde{s}} \quad (2) \]

Linearisation given by Eq. (1) - Eq. (2)

\[\mathbf{Lv'} = \mathbf{s} - \mathbf{\tilde{s}} \approx f(\mathbf{\tilde{s}}) \quad (3) \]

\[f(\mathbf{\tilde{s}}) \equiv \text{“true sources of sound”} \quad \text{[Goldstein, 2005]} \]
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Introduction to filtering in time domain

Flow decomposition

\[p = \tilde{p} + p' \]

- \(\tilde{p} \): base flow obtained by filtering \(p \)
- \(p' \): fluctuating part

What we want

- \(\tilde{p} \): no acoustic fluctuations \(\Rightarrow\) non-propagating base flow
- \(p' \): acoustic fluctuations only.
Flow decomposition

\[p = \bar{p} + p' \]

- \(\bar{p} \): base flow obtained by filtering \(p \)
- \(p' \): fluctuating part

What we want

- \(\bar{p} \): no acoustic fluctuations \(\Rightarrow \) non-propagating base flow
- \(p' \): acoustic fluctuations only.
Convolution filter example: 1 dimensional signal

Moving average filter: $\tilde{s} = h_{MA} \ast s$
Introduction to filtering in time domain

Convolution filter example: 2 dimensional signal

\[s \]

Gaussian filter \(\tilde{s} = h \ast s \)
Introduction to filtering in time domain

Differential filter example

\[\tilde{s} = \nabla^2 s \]
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Filter characteristics

Defining property

\[\tilde{P}(k, \omega) = 0 \quad \text{for} \quad |k| = \frac{\omega}{c_0} \]

Other requirements

- Causality
- Easy to implement
Filter characteristics

Defining property

\[\tilde{P}(k, \omega) = 0 \text{ for } |k| = \frac{|\omega|}{c_0} \]

Other requirements

- Causality
- Easy to implement
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
The wave-operator filter

Time domain

\[\tilde{p}(\mathbf{x}, t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) p(\mathbf{x}, t), \]

Frequency domain

\[\tilde{P}(\mathbf{k}, \omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k}, \omega) \]

\[\Rightarrow \tilde{P}(\mathbf{k}, \omega) = 0 \quad \text{for} \quad |\mathbf{k}| = \frac{|\omega|}{c_0} \]
The wave-operator filter

Time domain

\[\tilde{p}(\mathbf{x}, t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) p(x, t), \]

Frequency domain

\[\tilde{P}(\mathbf{k}, \omega) = \left(|\mathbf{k}|^2 - \frac{\omega^2}{c_0^2} \right) P(\mathbf{k}, \omega) \]

\[\Rightarrow \tilde{P}(\mathbf{k}, \omega) = 0 \quad \text{for} \quad |\mathbf{k}| = \frac{\omega}{c_0} \]
The wave-operator filter

Time domain

\[\tilde{p}(x, t) = \left(\frac{1}{c_0^2} \frac{\partial^2}{\partial t^2} - \nabla^2 \right) p(x, t), \]

Frequency domain

\[\tilde{P}(k, \omega) = \left(|k|^2 - \frac{\omega^2}{c_0^2} \right) P(k, \omega) \]

\[\Rightarrow \tilde{P}(k, \omega) = 0 \quad \text{for} \quad |k| = \frac{|\omega|}{c_0} \]
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Filtering of a two-dimensional problem
Parallel flow & source definitions

- $M_j = 0.756$
- $T_j = 600$ K
- Gaussian harmonic energy source, $\omega_0 = 76$ rad/s
Filtering of a two-dimensional problem

Results

- acoustic waves are filtered successfully
- hydrodynamic waves are distorted
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Rationale

Inverse filtering in frequency domain

1. \[\tilde{P}(k, \omega) = \left(|k|^2 - \frac{\omega^2}{c_0^2} \right) P(k, \omega) \]

2. \[\hat{P}(k, \omega) = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \tilde{P}(k, \omega) \]

Convolution filtering

1. Time domain: \[\hat{\rho} = h \ast \tilde{\rho} \]

2. Frequency domain: \[\hat{P} = H \tilde{P} \]

\[\Rightarrow H = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \]
Rationale

Inverse filtering in frequency domain

1. \(\tilde{P}(k, \omega) = \left(|k|^2 - \frac{\omega^2}{c_0^2} \right) P(k, \omega) \)
2. \(\hat{P}(k, \omega) = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \tilde{P}(k, \omega) \)

Convolution filtering

1. Time domain: \(\hat{\rho} = h \ast \tilde{\rho} \)
2. Frequency domain: \(\hat{P} = H \tilde{P} \)

\[\Rightarrow H = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \]
Rationale

Inverse filtering in frequency domain

1. \(\tilde{P}(k, \omega) = \left(|k|^2 - \frac{\omega^2}{c_0^2} \right) P(k, \omega) \)

2. \(\hat{P}(k, \omega) = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \tilde{P}(k, \omega) \)

Convolution filtering

1. Time domain: \(\hat{\rho} = h \ast \tilde{\rho} \)

2. Frequency domain: \(\hat{P} = H \tilde{P} \)

\[\Rightarrow \quad H = \frac{1}{\left(|k|^2 - \frac{\omega^2}{c_0^2} \right)} \]
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
Proof of concepts based on the two-dimensional shear layer problem

Two dimensional shear layer problem

- $k_x = \text{constant} = k_{x_0}$
- $\omega = \text{constant} = \omega_0$

\[h(x, t) = \delta(x)\delta(t)\frac{e^{-\kappa|y|}}{2\kappa} \]
Proof of concepts based on the two-dimensional shear layer problem

Corrective filter

Two dimensional shear layer problem

- \(k_x = \text{constant} = k_{x_0} \)
- \(\omega = \text{constant} = \omega_0 \)

\[h(x, t) = \delta(x)\delta(t)\frac{e^{-\kappa|y|}}{2\kappa} \]
Proof of concepts based on the two-dimensional shear layer problem

Results

\[\Rightarrow \text{Reconstruction of the hydrodynamic wave from the filtered pressure seems possible.} \]
Outline

1. Introduction
 - Objective
 - Motivation
 - Introduction to filtering in time domain
 - Filter characteristics

2. Wave-operator filter
 - The wave-operator filter
 - Filtering of a two-dimensional shear layer problem

3. Corrective filter
 - Rationale
 - Proof of concept based on the two-dimensional shear layer problem
 - General solution based on Green’s functions
General solution based on Green’s function

Green’s function

Wave-operator filtering

\[\Box^2 p = \tilde{p} \]

- \(\Box^2 \) denotes the wave operator
- \(\tilde{p} \) is the source term

Inverse filtering with Green’s function

\[p = G \ast \tilde{p}, \]

- \(G \) is a free field Green’s function for operator \(\Box^2 \).
General solution based on Green’s function

Corrective filter in two and three dimensions

Corrective filter in two dimensions

\[\hat{p}(\mathbf{x}, t) = \int_{S} \int_{0}^{+\infty} \frac{\tilde{p}(\mathbf{x} - \mathbf{x}', t - t')} {2\pi \sqrt{t'^2 - |\mathbf{x}'|^2 / c_0^2}} \, dt' \, d^2\mathbf{x}' , \]

Corrective filter in three dimensions

\[\hat{p}(\mathbf{x}, t) = \int_{V} \frac{\tilde{p}(\mathbf{x} - \mathbf{x}', t - |\mathbf{x}'|/c_0)} {4\pi |\mathbf{x}'|} \, d^3\mathbf{x}' . \]
Summary

- Wave-operator allows to filter acoustic fluctuations easily
- It distorts the hydrodynamic fluctuations
- A corrective filter based on Green’s function could be used to restore the hydrodynamic fluctuations.
For further reading

Aerodynamic sound; Space-time filtering; Non-radiating components;